China OEM Factory Price CNC Plastic Mc Nylon Spur Gear cycle gear

Product Description

natrual color plastic PA6 CHINAMFG

Nylon is a kind of engineering plastics used in comprehensive industries, has been applied almost every industrial field.The caprolactam monomer is first melted, and added catalyst, then poured it inside moulds at atmosphere pressure so as to shape in different castings, such as: rod, plate, tube.
 
Since the end of 1980’s, HangZhou Engineering Plastics Industireis Company has devoting herself on developing the technology of Nylon modification, greatly extended the applications in different industries. Basing on the Nylon, reinforced with variety of additives during the reaction, such as lubricant, molybdenum disulfide, graphite glass fiber, carbon fiber etc, to improve the properties, higher performance of wear-resistance, corrosion-resistance, self-lubrication, vibration-absorption, noise-absorption. At the same time, as the technics and structure of the moulds is quite simple, so that it can be manufactured in lower cost, becomes the ideal substitutes of bronze, stainless steel, Babbitt alloy,PTFE and so on.
 
Oil Nylon (green)
 
Oil Nylon(green)is the new engineering plastics that developed by HangZhou Engineering Plastics Industireis Company in the later 1980’s by importing the advanced technology from Nylacast Co., Ltd, UK, was the first authentic lubricating nylon that builds the liquid lubricant system during the processing stage, which makes its coefficient of friction is 50% lower than the general PA6 or PA66, the wear-resistance is 10 times than the general ones. Oil Nylon is specially developed for the parts of non-self-lubrication, heavy-loading and low-speed-running, which obviously resulted in a substantial increase in bearing life-5 times that of general PA6 and 25 times that of phosphor bronze! The lubricant contained within the material will not drain, adsorb or dry out and never needs replenishment. The uniform distribution of the lubricant throughout the product guarantees the constant performance of the parts over the whole service life and improvements in rate of wear, sliding frictional properties, abrasion resistance and stick slip performance, which are just a few of the benefits offered by this material. Oil Nylon has been successful in considerable enlarging the application of nylon in many industries and specifically for some un-lubricated running parts.
 
Other casting Nylon:
 
Oil Nylon + Carbon (Black)
Oil Nylon added carbon, has the very compact and crystal structure, which is better than the general casting nylon in the performance of high mechanical strength, wear-resistance, anti-aging, UV resistance and so on. It is suitable for making the bearing and other wear mechanical parts.
 
Oil MC901(Blue)
This improved MC Nylon, has striking blue color, which is better than general PA6/PA66 in the performance of toughness, flexibility, fatigue-resistance and so on. It is the perfect material of gear, gear bar, transmission gear and so on.
 
MC Nylon + MSO2(Light black)
MC Nylon added MSO2 can remain the impact-resistance and fatigue-resistance of casting nylon, as well as it can improve the loading capacity and wear-resistance. It has a wide application in making gear, bearing, planet gear, seal circle and so on.

nylon gear property:

Property Item No. Unit POM-C POM-H POM-H+PTFE
Mechanical Properties 1 Density g/cm3 1.41 1.43 1.50
2  Water absorption(23ºCin air) % 0.20 0.20 0.17
3 Tensile strength MPa 68 78 55
4 Tensile strain at break % 35 35 10
5 Compressive stress(at 2%nominal strain) MPa 35 40 37
6 Charpy impact strength (unnotched) KJ/m 2 ≥150 ≥200 ≥30
7 Charpy impact strength (notched) KJ/m 2 7 10 3
8 Tensile modulus of elasticity MPa 3100 3600 3200
9 Ball indentation hardness N/mm 2 140 160 140
  10 Rockwell hardness M84 M88 M84

Our Service:

1. Rich industry experience since 1988.
2. Wide arrange product line, including plastics sheet/rod/parts/accessories: MC NYLON, OIL NYLON, POM, UHMW-PE, PU, PETP, PC, PTFE, PVDF, PPS, PEEK, PAI, PI, PBI ect.
3. Manufacture, design and processing service as per your demand. 
 
 

Product technology:
CNC machine,Extrusion,Injection,ect.
 

Processing Equipment :
CNC machining center,CNC lathes,Milling,Injection Molding Machine,Extruder,Moulding press
 
 

 
Packaging &Shipping:
Packing in plastics bags,wooden case,pallet,container,ect. 
 
 

Certificate:
Certification:ISO,SGS,FDA,RoHS,Test report,ect.
 

 
FAQ:

1.A: What’s the size of plastics sheet?
   B:Nylon sheet:Thickness*Width*Length:20-100*1000*2000mm
       UHMW-PE sheet:Thickness*Width*Length:20-100*1000*2000mm; 20-100*1250*3130mm; 20-100*1250*4250mm
     POM sheet:Width*Length:1000*2000mm
 
2. A:Can we purchase a small part of plastics sheet?
    B: Yes,you can, if we have the size you require in stock.
 
3. A:What color of plastics sheet?
    B: Nylon sheet:  Natural,black,blue,or according to client’s requiremnet.
         UHMW-PE sheet:  White,black,green ,bule,yellow,or according to client’s requirement.
         White,black
 
4. A:Can you manufacture the plastics products as per drawing?
    B: Yes,we can.
 
5.A: What the precision of plastic products according to drawing?
   B: Different machine with different precision,it usually around 0.05-0.1mm
 
6.A: What the technologies in producing plastics parts?
   B: Different products with different technologies,such as CNC machine,Extrusion,Injection
 
7: A:What kinds of processing machine do you have?
    B: CNC machining center,CNC lathes,Milling,Injection Molding Machine,Extruder,Moulding press /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: PA
Density: 1.2
Color: White, Black, Green, Nature, Blue, Yellow, Black etc
Free Sample: Yes
Other Material: PE, Mc Nylon, PA6, PA66, PPS, Peek, PVDF
Compressive Stress: 51
Customization:
Available

|

Customized Request

spur gear

How do you retrofit an existing mechanical system with spur gears?

Retrofitting an existing mechanical system with spur gears involves modifying or replacing certain components to incorporate spur gears into the system. Here’s a detailed explanation:

1. Evaluate the Existing System:

Begin by thoroughly evaluating the existing mechanical system to determine its design, function, and limitations. Identify the specific components that need to be retrofitted with spur gears and understand how the system operates.

2. Design Considerations:

Based on the evaluation, consider the design considerations for integrating spur gears into the system. This includes factors such as gear size, tooth profile, gear material, gear ratio, and torque requirements. Determine the specific gear specifications that are compatible with the existing system.

3. Gear Selection:

Select the appropriate spur gears that meet the required specifications. Consider factors such as gear quality, load capacity, noise level, efficiency, and compatibility with the existing system components. Choose gears from reputable manufacturers or consult with a gear specialist for guidance.

4. Gear Positioning and Alignment:

Determine the optimal positioning and alignment of the spur gears within the existing system. This involves identifying the gear locations, shaft connections, and ensuring proper alignment with other components such as bearings and couplings. Accurate positioning and alignment are crucial for efficient gear operation and longevity.

5. Modification or Replacement:

Based on the design considerations and gear selection, proceed with the necessary modifications or replacements. This may involve removing existing components, such as gears with different tooth profiles, and replacing them with the selected spur gears. Ensure proper installation and secure attachment of the new gears.

6. Lubrication and Maintenance:

Implement appropriate lubrication practices for the newly retrofitted spur gears. Consult gear manufacturers’ recommendations for lubricant type, quantity, and maintenance intervals. Proper lubrication ensures smooth gear operation, reduces wear, and extends gear life.

7. Testing and Validation:

After the retrofitting process, conduct thorough testing and validation of the modified system. Verify that the spur gears are functioning as intended, ensuring proper engagement, smooth operation, and adequate load handling. Address any issues or discrepancies discovered during testing.

8. Documentation and Training:

Create documentation detailing the retrofitting process, including gear specifications, installation procedures, and maintenance requirements. This documentation serves as a reference for future maintenance and helps ensure consistent gear performance. Additionally, provide training to relevant personnel on the operation, maintenance, and troubleshooting of the retrofitted system.

Retrofitting an existing mechanical system with spur gears requires careful planning, proper gear selection, precise installation, and thorough testing. By following these steps and considering the specific requirements of the system, it is possible to successfully incorporate spur gears and enhance the performance and functionality of the mechanical system.

spur gear

Are spur gears suitable for high-torque applications?

Spur gears are commonly used in a wide range of applications, including those involving high-torque requirements. However, their suitability for high-torque applications depends on various factors. Here’s a detailed explanation:

Spur gears are designed to transmit power and torque between parallel shafts. They have straight teeth that engage fully, providing efficient power transfer. The suitability of spur gears for high-torque applications can be evaluated based on the following considerations:

  • Load Distribution: Spur gears distribute the transmitted load over a larger contact area compared to other gear types. This characteristic allows them to handle higher torque loads effectively.
  • Size and Diameter: The size and diameter of the spur gears play a crucial role in their ability to handle high torque. Larger gear diameters provide increased torque capacity due to the longer lever arm and larger contact area between the gear teeth.
  • Material Selection: Choosing the appropriate material for the spur gears is essential for high-torque applications. Strong and durable materials, such as hardened steel or alloy steels, are commonly used to ensure the gears can withstand the high stresses and torque loads without deformation or failure.
  • Gear Design: Proper gear design considerations, such as tooth profile, module or pitch, and the number of teeth, can impact the torque-carrying capacity of spur gears. Design parameters should be optimized to ensure sufficient tooth strength and minimize the risk of tooth breakage or excessive wear.
  • Lubrication and Maintenance: Adequate lubrication is critical for reducing friction, wear, and heat generation in high-torque spur gear applications. Regular maintenance, including lubricant replacement and gear inspections, can help identify and address any issues that may affect the gear’s torque-handling capabilities.
  • Supporting Components: The overall system design, including the selection of bearings, shafts, and housing, should be considered to ensure proper support and alignment of the spur gears. Well-designed supporting components contribute to the overall torque capacity of the system.

While spur gears can handle high torque, it’s important to note that there are limitations to their torque capacity. Factors such as gear size, material strength, tooth design, and operating conditions can affect the maximum torque the gears can safely transmit without failure.

In some cases, other gear types such as helical gears or bevel gears may be more suitable for specific high-torque applications. These gears offer advantages such as increased load-carrying capacity, improved torque transfer efficiency, and reduced noise and vibration levels.

Ultimately, the suitability of spur gears for high-torque applications should be evaluated based on the specific requirements, operating conditions, and industry standards applicable to the particular application.

spur gear

What industries commonly use spur gears?

Spur gears find wide applications across various industries due to their simplicity, efficiency, and versatility. Here’s a detailed explanation of the industries that commonly use spur gears:

  • Automotive Industry: The automotive industry extensively utilizes spur gears in various components and systems. They are commonly found in gearboxes, differentials, transmission systems, and engine timing mechanisms. Spur gears play a crucial role in transferring power and rotational motion between the engine, wheels, and other drivetrain components.
  • Machinery and Manufacturing: Spur gears are widely employed in machinery and manufacturing equipment across different sectors. They are used in conveyor systems, machine tools, printing presses, textile machinery, packaging machinery, and a variety of industrial applications. Spur gears facilitate power transmission and motion control in these systems.
  • Power Generation: Spur gears are essential in power generation systems such as wind turbines, hydroelectric turbines, and steam turbines. They are used to transmit power from the rotor to the generator, converting the rotational motion of the turbine blades into electricity. Spur gears enable efficient power transfer in these renewable energy systems.
  • Robotics and Automation: Spur gears have significant applications in robotics and automation systems. They are used in robotic joints, actuators, and drive systems to control motion and transmit torque accurately and efficiently. Spur gears enable precise movement and force transmission in robotic applications.
  • Aerospace and Aviation: The aerospace and aviation industries utilize spur gears in various applications. They can be found in aircraft landing gear systems, engine components, flight control systems, auxiliary power units (APUs), and other critical equipment. Spur gears play a vital role in transmitting power and controlling movement in these aerospace systems.
  • Marine and Shipbuilding: Spur gears are commonly used in the marine and shipbuilding industry. They find applications in propulsion systems, winches, steering mechanisms, and other equipment that require torque transmission and speed control. Spur gears enable efficient power transfer and maneuverability in marine vessels.
  • Appliances and Household Equipment: Spur gears are present in numerous household appliances and equipment. They are used in washing machines, dishwashers, mixers, food processors, garage door openers, and many other appliances that require rotational motion and power transmission. Spur gears facilitate the efficient operation of these household devices.
  • Power Tools: Spur gears are widely utilized in power tools such as drills, saws, grinders, and sanders. They enable the transmission of power from the motor to the tool’s cutting or grinding components, ensuring efficient and controlled operation. Spur gears contribute to the functionality and performance of power tools.
  • Medical Equipment: Spur gears are used in various medical devices and equipment. They can be found in imaging systems, surgical robots, medical pumps, and other applications that require precise motion control and torque transmission. Spur gears play a critical role in the functioning of medical equipment.
  • Clocks and Watches: Spur gears are a fundamental component in mechanical clocks and watches. They are responsible for accurate timekeeping by transferring rotational motion from the mainspring or oscillator to the hour, minute, and second hands. Spur gears have historical significance in timekeeping mechanisms.

These are just a few examples of the industries where spur gears are commonly used. Their simplicity, reliability, and efficiency make them a popular choice in a wide range of applications, enabling power transmission, motion control, and precise operation in diverse industrial sectors.

China OEM Factory Price CNC Plastic Mc Nylon Spur Gear cycle gearChina OEM Factory Price CNC Plastic Mc Nylon Spur Gear cycle gear
editor by CX 2024-04-02