China Best Sales Rotary Kiln Spur Girth Gear Used in Construction Industry Machinery gear ratio calculator

Product Description

Rotary Kiln Spur Girth Gear Used in Construction Industry Machinery
 

Product Description

Girth Gears: Rotary kiln Girth Gear,ball mill Girth Gear
Girth Gears offered find extensive application in different industry sectors including in sponge iron plants, steel & cement industry, mining industry, wind mills as well as in other industry sectors. These are made available in module range of 10 Module to 70 Module and in minimum diameters of 100 mm to 15000 mm. Further, these comprise maximum weight of 70 MT single pieces. Here the range of hardened & ground gear boxes/gears comprise Worm gear boxes, Helical / Double helical gears/gearboxes, Helical-Bevel gearboxes, Planetary Gearboxes and others.

ZTIC Gear Cutting Machines include:
Ø16m CNC Hobbing Machine
Ø12m Gear Cutting Machine (Switzerland)
Ø10m Hobbing Machine (Germany)
Ø4m CNC High Speed Hobbing Machine (Germany)
Ø1.6m Horizontal CHC Hobbing Machine (Germany)
Ø5m CNC Profile Gear Grinding Machine (Germany)
Ø2.8m CNC Profile Gear Grinding Machine (Germany)
Ø1.25m CNC Profile Gear Grinding Machine (Germany)
Ø1m CNC Profile Gear Grinding Machine (Germany)
Ø0.8m CNC Profile Gear Grinding Machine (Germany)

With more than 1000 girth gears sold over the world CHINAMFG Gear is a leading supplier in the cement and mineral industry. And as member of AGMA (American Gear Manufacturers Association), we do actively take part in defining the standard for gear rating calculations and service factors. 
We provide girth gears in 3 different designs
Fabricated steel- forged ring- rolled plate  Cast steel 

Ductile (Nodular) cast iron  
Fabricated gears became more common in the past and are constructed with forged steel gear rim materials and electro welded body structure. The rings are manufactured from a whole block of high resistance alloy steel. After the rough machining of the ring, we carry out hardening and tempering heat treatment in order to improve the mechanical characteristic and therefore its relevant performance.  
Avantages of fabricated girth gears
The forged material structure excludes the risk of inclusions
Structure defects like gas holes, micro shrinkage, pin holes, hot tears, sand and slag inclusions are avoided
Hence, repair welding of the body structure and e.g. grinding of toothed areas is not required.
The fabricated manufacturing procedure excludes the need for patterns and risers
Rim material has higher hardness and higher strength than the material used for the underlying structure (i.e. web, gussets)
These features will reduce the lead time and costs. Fabricated manufacturing ensures a fast delivery.
This is especially beneficial in an emergency situation, where the existing gear rim is suffering from damage   

Features

External teeth 
Maximum diameter: 16000 mm 
Toothed face width: 1700 mm 
Maximum module: 45 by hob 
Maximum module: 65 gear finishing cutter
Internal teeth 
Maximum Diameter: 6500 mm 
Maximum module: 25.4 
Toothed face width: 400 mm

Pinions
ZTIC Gear invested in significant resources and achieved many innovations with pinions. The right combination of material, hardness and finishing between pinion and gear is crucial for a long lifetime of the installed equipment. We design and manufacture pinions to match every customers need, no matter how unique the situation might be. 

Quality assurance documents
The following reports are to be submitted to Quality Assurance:
a. Chemistry report
b. Physical report
c. Heat treatment documents
CITIC HMC  Q/HM 973.2-2007 Specification for Steel Castings for Grinding Mills
d. Ultrasonic inspection report (before and after repairs)
e. Magnetic particle inspection report (before and after repairs)
f. Dimensional report
g. Weld repair maps
h. Weld procedures and Procedure qualification record
i. Welder qualification
j. Nondestructive testing inspector qualification

Item Structural features Processing measure Test content
Girth Gear (1)GS42CrMo4Alloy Steel (corporate proprietary standards)
HB 220~240
(2)semi-structured, Y-Spoke 
(3)Helical 
(4) reasonable sealing and alignment structure of alloy steel (corporate proprietary standards)
(1) outer steel refining (R-H argon and vacuum treatment) 
(2) proprietary cold mold hanging sand technology to ensure the casting, the teeth dense 
(3) normalizing (proprietary technology) to ensure that the tooth surface hardness 
After
(4)rough hobbing, release time, repair the joint surface, then fine roll 
(5) proprietary homemade hob fine hobbing
(1)castings mechanical properties and chemical composition (internal standard) 
(2) roughing after sonic testing 
(3)semi-finishing, finishing after ultrasonic testing and magnetic particle inspection 
(4) tooth surface magnetic particle inspection, hardness test 
(5)tooth tolerance check 
(6) the factory assembly load test to check the accuracy of the size of gear

 
1. The technical requirements of a large CHINAMFG Gear ring:
1) is pretreated before normalizing surface hardening treatment, the hardness should HB210 ~ 250; mechanical performance are the ultimate strength Rb \ 690MPa, yield stress Rs \ 490MPa, elongation D5 \ 11%, reduction of area W \ 25% , impact toughness Ak \ 30J; teeth induction hardened, hardness HRC50 ~ 55; effective hardened layer depth \ 3 ~ 5mm.
2) overall ultrasonic flaw detection, internal quality should meet 2 requirements GB7233-87 standard requirements; tooth and fillet magnetic particle inspection, quality should meet 2 requirements GB/T9444-88 standards.
3) Note the casting is not rounded R5 ~ R10.
4) Tooth chamfer at both ends and 1 45b.5) by 2 and a half ring gear tooth width of each ring coupling along the edge of a whole ring made with high strength bolts, combined with the tooth surface must be at the bottom center.
2 large ring gear manufacturing process

2.1  of rough
Steel casting blank is provided by CITIC Heavy Machinery Co., Ltd. Heavy Forging plant, run by GB11352-89 standard specifies requirements for modeling according to the casting process, smelting, casting, hit boxes, cleaning, dressing castings;. During inspection and acceptance by the drawings and Technical requirements for steel blank
Checks, according JB/T6402-92 standards issued after acceptance
Down procedure.
2.2  roughing
Crossed by drawing and stay out allowance, alignment, connection, processing both inside and outside the circle, combining face milling, drilling and other processes.
2.3  Exploration injury
Overall ultrasonic flaw detection, internal quality should meet the 2 requirements of GB7233-87 standards.
2.4  normalizing pretreatment
Semi-ring pairs normalizing and tempering treatment, provide a good organization for subsequent surface hardening; press drawings deformation of the half ring gear inspection after heat treatment.
2.5  Machining
First 2 and a half ring is made with high strength bolts connecting the ring as a whole, the overall process by drawing a circle Quannei Wai teeth and upper and lower end, and then drawing and machining milling process requirements.
2.6  Elimination of processing stress
The overall ring annealed to eliminate stress.
2.7  overall ring surface hardening
IF along the alveolar tooth surface induction hardening, hardness HRC50 ~ 55, effective hardened layer depth \ 3 ~ 5mm.
2.8  Final inspection
First, the detection frequency quenching, the hardness after tempering ring gear cogging meets the requirements of the drawings; secondly, to detect whether the maximum outer diameter larger size D6944 as the deformation \ 3mm, the mechanical correction required until qualified; Thirdly, tooth and fillet magnetic particle inspection, quality should meet 2 requirements GB/T9444-88 standard requirements; Finally, according to the drawings and technical requirements for final inspection.
 

Company Profile

Our mode of transport is taken according to each country’s situation is different transportation, while our packaging, according to the latest customs situation, constantly updated, improved our packaging, we guarantee that you receive it within 3-7 working days to your product.
High quality service :
Best Service with after-sales service and consultation,we have an excellent customer service driven approach to our
business, unlike most sites we are consistently available via sales hotline, email, or MSN and always respond to
emails within 30 mins
Pre-Sales Service
• Provide details about the production procedure
• Assign engineers for installation and testing
Sales Service
• Customized solution designs
• Product rendering and steel structure drawing
•successful project examples and visits to our production and R&D base
After-Sales Service
• Two-year quality warranty with lifelong maintenance.
•Free guarantee repair (including labor and material): free repair service during the quality warranty period and reasonable charge for spare parts and maintaining service after the quality warranty period.  We will never exempt our responsibilities on product owned defects.  
•Responding time: CHINAMFG receiving user’s notification, we ensure 24-hour after-sales technical support.
 

After-sales Service: Twenty Four Hour Online
Warranty: a Year
Gear Cutting Machines: 16m CNC Hobbing Machine
Applications: Applied in The Cement and Minerals Industries: Va
Standards/Certificates: Uni En ISO Aws ASTM Asme DIN
Module Range: 10 Module to 70 Module
Customization:
Available

|

Customized Request

spur gear

Can spur gears be used in precision manufacturing equipment?

Yes, spur gears can be used in precision manufacturing equipment. Here’s a detailed explanation:

Precision manufacturing equipment requires high accuracy, repeatability, and reliability to produce intricate and precise components. While other gear types like helical gears or bevel gears are commonly used in precision applications, spur gears can also be suitable in certain scenarios.

1. Low-Speed Applications:

Spur gears are well-suited for low-speed applications where high precision is required. In precision manufacturing equipment, such as milling machines, lathes, or grinding machines, where controlled and precise rotational motion is essential, spur gears can provide the necessary power transmission with accuracy.

2. Linear Actuators and Positioning Systems:

Spur gears can be used in linear actuators and positioning systems within precision manufacturing equipment. These systems require precise movement control, and spur gears can convert rotary motion into linear motion accurately. By incorporating precision-ground spur gears with proper backlash control, highly accurate positioning can be achieved.

3. Tooling Systems:

Spur gears are employed in tooling systems used in precision manufacturing equipment, such as indexing heads and rotary tables. These systems enable precise and repeatable positioning of workpieces or cutting tools. Spur gears with high precision tooth profiles and low backlash are utilized to ensure accurate tool positioning and consistent machining results.

4. Measuring and Inspection Equipment:

In precision manufacturing, gear systems are also utilized in measuring and inspection equipment. Spur gears can be incorporated into gear trains within instruments like coordinate measuring machines (CMMs) or optical comparators to translate linear or rotary motion into precise measurement data. The gear systems in these instruments require minimal backlash and high accuracy to ensure accurate measurements.

5. Customized Gear Systems:

In some cases, precision manufacturing equipment may require custom-designed gear systems to meet specific application requirements. Spur gears can be tailored and optimized for these custom gear systems, taking into account factors like gear tooth profile, material selection, and gear geometry. This allows for the creation of highly precise and specialized gear systems.

While spur gears have advantages in precision manufacturing equipment, it’s important to consider their limitations. Due to their design, spur gears may produce more noise and vibration compared to other gear types. Additionally, they are generally not suitable for high-speed or high-torque applications that demand continuous and smooth power transmission.

Overall, spur gears can be successfully used in precision manufacturing equipment for specific applications that require low-speed, precise motion control, accurate positioning, and measurement capabilities. Proper gear selection, high-quality manufacturing, and careful system integration are key to achieving the desired precision and performance in these gear applications.

spur gear

What lubrication is required for spur gears?

The lubrication requirements for spur gears are essential to ensure smooth operation, minimize wear, reduce friction, and dissipate heat. Here’s a detailed explanation of the lubrication needed for spur gears:

Spur gears typically require lubricants that possess specific characteristics to provide effective lubrication. These lubricants should have the following properties:

  • Viscosity: The lubricant should have the appropriate viscosity to create a sufficient lubricating film between the gear teeth. The viscosity should be suitable for the operating conditions, including the load, speed, and temperature. Higher loads and speeds generally require higher viscosity lubricants to maintain an adequate lubricating film.
  • Extreme Pressure (EP) Properties: Spur gears may experience high contact pressures and sliding friction, especially during heavy load conditions. Lubricants with EP additives are necessary to provide enhanced protection against wear and prevent metal-to-metal contact between the gear teeth. EP additives form a protective film on the gear surfaces, reducing friction and extending gear life.
  • Anti-Wear (AW) Properties: Lubricants for spur gears should have anti-wear properties to protect the gear teeth from excessive wear and surface damage. AW additives form a protective layer on the gear surfaces, reducing friction and preventing metal-to-metal contact. This helps prolong the gear life and maintain gear system efficiency.
  • Oxidation and Corrosion Resistance: The lubricant should possess good oxidation resistance to withstand high operating temperatures without deteriorating. It should also provide corrosion protection to prevent rust and corrosion on the gear surfaces, especially in environments with moisture or aggressive contaminants.
  • Compatibility: The lubricant should be compatible with the materials used in the gear system, including the gear material, shafts, and bearings. It should not cause any adverse reactions or damage to the gear components. Consult the gear manufacturer’s recommendations for lubricant compatibility.

The specific type and grade of lubricant needed for spur gears depend on the application, operating conditions, and gear material. Common lubricants used for spur gears include mineral oils, synthetic oils, and grease. Synthetic lubricants are often preferred for their superior performance in terms of viscosity stability, oxidation resistance, and temperature extremes.

When applying lubrication to spur gears, ensure that the lubricant is evenly distributed across the gear teeth. Proper lubrication can be achieved through methods such as oil bath lubrication, oil mist lubrication, or oil application directly onto the gear teeth. The lubrication interval and quantity should be based on the gear system’s operating conditions and the lubricant manufacturer’s recommendations.

Regular inspection and maintenance of the gear system are necessary to monitor the lubricant condition, replenish as needed, and ensure the gears remain properly lubricated throughout their service life.

It is important to consult the gear manufacturer’s guidelines and recommendations, as they may provide specific lubrication requirements and considerations for their gear products.

spur gear

Can you explain the concept of straight-cut teeth in spur gears?

The concept of straight-cut teeth is fundamental to understanding the design and operation of spur gears. Straight-cut teeth, also known as straight teeth or parallel teeth, refer to the shape and arrangement of the teeth on a spur gear. Here’s a detailed explanation of the concept of straight-cut teeth in spur gears:

Spur gears have teeth that are cut straight and parallel to the gear axis. Each tooth has a uniform width and thickness, and the tooth profile is a straight line. The teeth are evenly spaced around the circumference of the gear, allowing them to mesh with other spur gears.

The key characteristics and concepts related to straight-cut teeth in spur gears include:

  • Tooth Profile: The tooth profile of a spur gear with straight-cut teeth is a straight line that extends radially from the gear’s pitch circle. The profile is perpendicular to the gear axis and remains constant throughout the tooth’s height.
  • Pitch Circle: The pitch circle is an imaginary circle that represents the theoretical point of contact between two meshing gears. For a spur gear, the pitch circle is located midway between the gear’s base circle (the bottom of the tooth profile) and the gear’s addendum circle (the top of the tooth profile).
  • Pressure Angle: The pressure angle is the angle between the line tangent to the tooth profile at the pitch point and a line perpendicular to the gear axis. It determines the force distribution between the meshing teeth and affects the gear’s load-bearing capacity and efficiency. Common pressure angles for spur gears are 20 degrees and 14.5 degrees.
  • Meshing: Straight-cut teeth in spur gears mesh directly with each other. The teeth engage and disengage along a line contact, creating a point or line contact between the contacting surfaces. This direct meshing arrangement allows for efficient power transmission and motion transfer.
  • Advantages and Limitations: Straight-cut teeth offer several advantages in spur gears. They are relatively simple to manufacture, resulting in cost-effective production. Moreover, they provide efficient power transmission and are suitable for moderate to high-speed applications. However, straight-cut teeth can generate more noise and vibration compared to certain other tooth profiles, and they may experience higher stress concentrations under heavy loads.

In summary, straight-cut teeth in spur gears refer to the straight and parallel arrangement of the gear’s teeth. The teeth have a uniform profile with a constant width and thickness. Understanding the concept of straight-cut teeth is essential for designing and analyzing spur gears, considering factors such as tooth profile, pitch circle, pressure angle, meshing characteristics, and the trade-offs between simplicity, efficiency, and noise considerations.

China Best Sales Rotary Kiln Spur Girth Gear Used in Construction Industry Machinery gear ratio calculatorChina Best Sales Rotary Kiln Spur Girth Gear Used in Construction Industry Machinery gear ratio calculator
editor by CX 2023-09-12